	question puper cont	an	is o printed pages.]	
			Your Roll No	
Sr.	No. of Question Paper	:	8537 HC	
Un	ique Paper Code	:	32377908	
Na	me of the Paper	:	Econometrics	
Naı	me of the Course	:	STATISTICS : DSE for Honours	
Sen	nester	:	V	
Dui	ration: 3 Hours		Maximum Marks : 75	
Ins	tructions for Candida	te	es and Letompe	
1.	Write your Roll No. on the top immediately on receipt of this question paper.			
2.	Attempt five questions in all.			
3.	Question 1 is compulsory.			
1.	Attempt four more que each of the Section A	st	ions, selecting two questions from	

(a) Fill in the blanks (Attempt any five):

_ variables.

(i) In a regression analysis, values are fixed for the

(ii) Variables such as gender, marital status, colour of the eye are examples of _____scales.

(iii)	Multicollinearity is essentially a phenomenon.
(iv)	A regression model that includes the lagged values of explanatory variables is called a model.
(v)	The coefficients estimated in the presence of Heteroscedasticity are not estimators.
(vi)	If the Durbin-Watson d test statistic is found to be equal to 0, this means that order autocorrelation is
(vii)	Structural parameters express the effect of each explanatory variable on the dependent variable. (5)
(b) State	e whether True/False (Attempt any five):
(i)	The smallest possible multiple regression model comprises of two variables.
(ii)	Stochastic variables are non-random variables.
(iii)	A hypothesis such as H_0 : $\beta_2 = \beta_3 = 0$ can be tested using an F-test.
(iv)	If a qualitative variable has m categories, we need

to introduce (m-1) dummies.

3

- (v) Errors of measurement is not a cause for model specification errors.
- (vi) In Koyck method, $\beta_k = \beta_0 \lambda^k$, k = 0, 1,... and $0 < \lambda < 1$, (1λ) is known as rate of decay of distributed lags.
- (vii) The measure of proportion of variation in Y explained by the explanatory variables X_2 , X_3 , ... jointly is given by R^2 . (5)
- (c) Give short answers (Attempt any two):
 - Derive the relationship between the coefficient of determination and F-test used in the analysis of variance.
 - (ii) From a cross-sectional data on 41 countries, thefollowing regression was obtained:

In
$$Y_i = \beta_1 + \beta_2 \ln X_{2i} + \beta_3 \ln X_{3i} + u_i$$

Running the auxiliary regression

$$e_i^2 = -5.8417 + 2.5629 \ln X_{2i} + 0.6918 \ln X_{3i} - 0.4081 (\ln X_{2i})^2$$

$$-0.049 (\ln X_{3i})^2 + 0.0015 (\ln X_{2i}) (\ln X_{3i})$$
 R² = 0.1148

Test the presence of Heteroscedasticity using White's test. (Chi-square value at 5% level of significance is 11.0705)

P.T.O.

8537

4

(iii) Interpret the following estimated regression model.

$$\hat{Y}_i = -1.9356 + 0.1608 X_2 + 0.1995 X_3$$

$$(0.033) \quad (0.1858)$$
p-value = (<0.001) (0.300) $R^2 = 0.95$

$$(2.5 \times 2)$$

SECTION - A

2. (i) Define Structural and Reduced form models. If

$$Q_{d} = \beta_{0} + \beta_{1}P + \beta_{2}Y + U$$

$$Q_{s} = \alpha_{0} + \alpha_{1}P + V$$

$$Q_{d} = Q_{s}$$

is demand-supply model, then find the reduced form model.

- (ii) Stating clearly the underlying assumptions, obtain the restricted least squares estimator of β and its variance under the set of linear restrictions given by R $\beta = r$, for the GLM $\underset{n \times l}{Y} = \underset{n \times k}{X} \underset{k \times l}{\beta} + \underset{n \times l}{U}$. (7,8)
- 3. (i) What types of model specification errors is one likely to encounter in practice? What are the consequences of including an irrelevant variable?

8537

- (ii) Discuss briefly the problem of Multicollinearity and its consequences. Describe any two remedial measures. (7,8)
- 4. (i) Discuss the types of data available for econometric analysis, giving suitable examples.
 - (ii) In the case of General Linear model $Y = X \beta + U$, obtain the Best Linear Unbiased Estimator (BLUE) of β , clearly stating all the assumptions. Comment on the MLE of β .

SECTION - B

- 5. (i) What happens if Ordinary Least Squares estimators are applied to a model suffering from Autocorrelated disturbances? Discuss its consequences on estimation procedure. Describe Durbin-Watson test for detection of autocorrelation by stating its assumptions.
 - (ii) Explain the Durbin two-stage procedure for the estimation of autocorrelation parameters. (10,5)
- 6. (i) What are dummy variables? What caution should be undertaken in the use of these variables?

(ii) What do you understand by lag? In the Geometric Lag Model:

$$Y_{t} = \alpha + \beta_{0}X_{t} + \beta_{1}X_{t-1} + \dots + \beta_{k}X_{t-k} + \dots + U_{t}$$

where $\beta_k = \beta_0 \lambda^k$, $0 \le \lambda \le 1$, discuss Koyck's scheme of reducing the number of parameters to be estimated.

(6.9)

- 7. (i) For a generalized least squares model $Y = X \beta + U$, with $E(U U') = \sigma^2 \Omega$, Ω being known, symmetric, positive definite matrix, estimate β and find its variance. Also, find unbiased estimator for σ^2 .
 - (ii) Define Heteroscedasticity and discuss White's Test for Heteroscedasticity. (8,7)